Mechanisms of nitric oxide-mediated neurotoxicity in primary brain cultures.

نویسندگان

  • V L Dawson
  • T M Dawson
  • D A Bartley
  • G R Uhl
  • S H Snyder
چکیده

In addition to mediating several physiological functions, nitric oxide (NO) has been implicated in the cytotoxicities observed following activation of macrophages or excess stimulation of neurons by glutamate. We extend our previous observations of glutamate-stimulated, NO-mediated neurotoxicity in primary cultures of rat fetal cortical, striatal, and hippocampal neurons. Neurotoxicity elicited by either NMDA or sodium nitroprusside (SNP) exhibits a similar concentration-effect relationship and time course. The concentration-effect curve of NMDA-induced neurotoxicity is shifted to the right in the presence of nitro-L-arginine and farther to the right in arginine-free media. The rank order of potency of several NO synthase (NOS) inhibitors in preventing neurotoxicity is the same as the rank order of these compounds in inhibiting NOS, and this inhibition is stereospecific. NMDA neurotoxicity is also prevented by flavoprotein inhibitors and calmodulin inhibitors, fitting with the roles of flavoproteins and calmodulin as NOS regulators. 8-Bromo-cGMP and guanylyl cyclase inhibitors do not affect neurotoxicity, while superoxide dismutase attenuates neurotoxicity. NOS neurons appear to be the source of neurotoxic NO in culture, as lesions of these neurons with 20 microM quisqualate diminish subsequent NMDA neurotoxicity. Moreover, NMDA neurotoxicity develops over time in culture coincident with the expression of NOS. Immunohistochemical localization of NOS in cultures and intact brain demonstrates widespread distribution of the cell processes suggesting that NOS neurons contact the majority of cortical neurons and so could mediate widespread neurotoxicity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Differential susceptibility to neurotoxicity mediated by neurotrophins and neuronal nitric oxide synthase.

NMDA neurotoxicity, which is mediated, in part, by formation of nitric oxide (NO) via activation of neuronal NO synthase (nNOS), is modulated by neurotrophins. nNOS expression in rat and mouse primary neuronal cultures grown on a glial feeder layer is significantly less than that of neurons grown on a polyornithine (Poly-O) matrix. Neurotrophins markedly increase the number of nNOS neurons, nNO...

متن کامل

Mechanisms and structural determinants of HIV-1 coat protein, gp41-induced neurotoxicity.

Of the individuals with human immunodeficiency virus type 1 (HIV-1) infection, 20-30% will develop the neurological complication of HIV-associated dementia (HAD). The mechanisms underlying HAD are unknown; however, indirect immunologically mediated mechanisms are theorized to play a role. Recently, the HIV-1 coat protein gp41 has been implicated as a major mediator of HAD through induction of n...

متن کامل

Immunosuppressant FK506 enhances phosphorylation of nitric oxide synthase and protects against glutamate neurotoxicity.

Immunosuppressants FK506 and cyclosporin A inhibit neurotoxicity of N-methyl-D-aspartate in primary cortical cultures, while having no effect on quisqualate- and kainate-mediated neurotoxicity. Rapamycin completely reverses the neuroprotective effect of FK506. Both FK506 and cyclosporin A inhibit NMDA-elicited/nitric oxide-mediated increases in cGMP levels in cortical cultures. FK506 has no eff...

متن کامل

Inhibitors of phospholipase C prevent glutamate neurotoxicity in primary cultures of cerebellar neurons.

The role of phospholipase C in the molecular mechanism of glutamate neurotoxicity was assessed in primary cultures of cerebellar neurons. It is shown that 1-[6-[[(17b)-3-methoxyestra-1,3, 5(10)-trien-17-yl]amino] hexyl]-1H-pyrrole-2,5-dione (U-73122) and 1-O-octadecyl-2-O-methyl-rac-glycero-3-phosphorylcholine (Et-18-OCH(3)), two agents that inhibit phospholipase C, prevent glutamate and N-meth...

متن کامل

Time dependency of the action of nitric oxide in lipopolysaccharide-interferon-gamma-induced neuronal cell death in murine primary neuron-glia co-cultures.

We investigated the time-dependency of the action of nitric oxide (NO) on glia-mediated neuronal cell death. Cortical neuron-glia co-cultures were treated with lipopolysaccharide and interferon gamma (LPS/IFNgamma). The production of NO was first detectable 9 h after the exposure to LPS/IFNgamma and increased for up to 48 h. A significant neuronal cell death was observed 36-48 h after treatment...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 13 6  شماره 

صفحات  -

تاریخ انتشار 1993